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Author's Note Part of the material of this chapter is taken from the Consultative Committee for Space

Data Systems (CCSDS) publications [I ][2] for which the author is a major contributor.

1. Introduction

In the late 80's, when the author started working at the Goddard Space Flight Center (GSFC) for the

National Aeronautics and Space Administration (NASA), several scientists there were in the process of
formulating the next generation of Earth viewing science instruments, the MODerate Resolution Imaging

Spectroradiometer (MODIS). The instrument would have over thirty spectral bands and would transmit
enormous data through the communications channel. This was when the author was assigned the task of

investigating Iossless compression algorithms for space implementation to compress science data in order

to reduce the requirement on bandwidth and storage.

Implementation of an algorithm in space differs in many ways than implementation on the ground. The

difference is mainly attributed to the lack of computing resource in space and the possible bit error incurred
in the communication channel. A spacecraft is designed in a rather physically compact environment, each

subsystem (power, attitude control, instrument, data handling, telemetry .... ) is given only limited budget in
power, mass, weight. Any computation other than absolutely necessary is normally not supported. Taking

all these constraints in consideration, a set of requirements were first formulated for selecting a lossless
compression algorithm:

a. The algorithm has to adapt to the changes in data statistics to maximize compression

performance.
b. The algorithm can be easily implemented with few processing steps in real time with small

memory and little power usage.
c. The algorithm can be interfaced with a packet data system such that each packet can be

independently decoded without requiring information from other packets.

At the time of the study (early 90's), the "real time" requirement in (b) implies over 7.5 million samples/sec
for a 30 frames/sec 5122 CCD sensor. Requirement (c) a/lows a long scan-line of pixels to be compressed

independently into a data packet, which will then be protected by error control coding scheme. This
requirement provides error containment within a packet in the event when un-correctable channel error
occurs.

Several available algorithms were evaluated: Huffman [3], Ziv-Lempei [4], arithmetic [5], Rice [6] on test
science data. The compression performance and the speed throughput of the Rice algorithm suggested

further study which resulted in a proof [7] of its performance. The proof establishes the Rice algorithm as a
type of adaptive Huffman code on de-correlated data with a Laplacian distribution. It happens that most of

data collected on science instruments, be it 1, 2-dimensional, or even multi-spectral, once de-correlated, do
follow this distribution.

Further study on the algorithm brought out a parallel architecture which can be implemented in Application

Specific Integrated Circuit (ASIC) for space applications [8]. An extension to low-entropy data was also
devised and incorporated in the original Rice architecture. The algorithm is then referred to as the

extended_Rice, or e_Rice algorithm.

In 1994, with enough interest in the international space agencies, the e_Rice algorithm was proposed to the
CCSDS sub-panel as a candidate for recommendation as a standard. In 1997, CCSDS published the Blue
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Book [1] which adopts the e_Rice as the recommendation for standard. A Green Book [2] which serves as

an application guide was also released.

2. The e Rice Algorithm

The Rice algorithm exploits a set of variable-length codes to achieve compression. Each code is nearly

optimal for a particular geometrically distributed source. Variable-length codes, such as Huffman codes
and the codes used by the Rice algorithm, compress data by assigning shorter code words to symbols that

are expected to occur with higher frequency, as illustrated in section 3.1. By using several different codes
and transmitting the code identifier, the Rice algorithm can adapt to many sources from low entropy (more

compressible) to high entropy (less compressible). Because blocks of source samples are encoded
independently, side information does not need to be carried across packet boundaries if de-correlation of

source samples are only executed among these blocks, then the performance of the algorithm is

independent of packet size.
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Figure 2-1 The Encoder Architecture

A block diagram of the Rice algorithm is shown in Figure 2-1. It consists of a preprocessor to de-correlate

data samples and subsequently map them into symbols suitable for the entropy coding stage. The input
data to the preprocessor, x, is a J-sample block of n-bit samples:

X_X 1,x2, • • .Xj.

The preprocessor transforms input data into blocks of preprocessed samples, 8, where:

d=81,62,...Sj.

The Adaptive Encoder converts preprocessed samples, 8, into an encoded bit sequence y.

The entropy coding module is a collection of variable-length codes operating in parallel on blocks of J

preprocessed samples. The coding option achieving the highest compression is selected for transmission,

along with an ID bit pattern used to identify the option to the decoder. Because a new compression option
can be selected for each block, the Rice algorithm can adapt to changing source statistics. Although the

CCSDS Recommendation specifies that the parameter J be either 8 or 16 samples per block, the preferred
value is 16. The value of 16 samples per block is the result of experiments performed on several classes of

science data, both imaging and non-imaging. These studies monitored the achievable compression ratio as

a function of the parameter J, which was set to 8, 16, 32, and 64 samples/block for the various classes of
science data. Values of J less than 16 result in a higher percentage of overhead, which yields a lower
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compression ratio, whereas values of J higher than 16 yield low overhead but have less adaptability to
variations in source data statistics.

3. The Adaptive Entropy Coder

3.1 Fundamental Sequence Encoding

To see how a variable length code can achieve data compression, consider two methods of encoding

sequences from an alphabet of four symbols:

_Symbol Probability Code 1 Code 2 (FS Code)

Sl 0.6 00 1

s2 0.2 01 01

s 3 0.1 10 001

s4 0.1 11 0001

Code 2 is known as the "comma" code, it is also defined as the Fundamental Sequence (FS) code.

Under either code, encoded bit streams corresponding to symbol sequences are uniquely decodable. For
Code 1, we recognize that every two encoded bits correspond to a symbol. For the FS code we recognize
that each ' 1' digit signals the end of a code word, and the number of preceding zeros identifies which

symbol was transmitted. This simple decoding procedure allows FS codewords to be decoded without the
use of lookup tables.

The reason that the FS code can achieve compression is that when symbol s 1 occurs very frequently, and

symbols s3 and s4 are very rare, on average we will transmit fewer than two encoded bits per symbol.. In

the above example, Code 2 will achieve an average code word length of (0.6+2x0.2+3x0.1+4x0.1)/4 =

0.425 bits per symbol whereas Code 1 always requires two encoded bits per symbol.

Longer FS codes achieve compression in a similar manner. Table 3-1 illustrates the FS codewords for

preprocessed sample values with n-bit dynamic range.

Table 3-1: Fundamental Sequence Codewords As a Function of the Preprocessed Samples

Preprocessed

Sample Values, 8i FS Codeword

0 1
1 01

2 001

2n-I 0000... 00001

(2n-1 zeros)
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3.2 The Split-Sample Option

Most of the options in the entropy coder are called 'split-sample options'. The k th split-sample option

takes a block ofJ preprocessed data samples, splits off the k least significant bits (LSB) from each sample
and encodes the remaining higher order bits with a simple FS codeword before appending the split bits to

the encoded FS data stream. This is illustrated in Table 3-2 for the case of k split bit being 0 (no split-bit),

1 or 2 on a sequence of 4-bit samples.

Table 3-2:

Sample
Values

Examples of Split-_

4-bit Binary
Representation

ample Options Usin
FS Code, k = 0

Fundamental Sequence Codes
k=l

1 LSB + FS Code

k=2

2 LSB + FS
Code

8 1000 000000001 0 00001 00 001

7 0111 00000001 1 0001 11 01

1 0001 01 1 1 01 1

4 0100 00001 0 001 00 01

2 0010 001 0 01 10 1

0000010101

0 0000 1

0001

1 0131 01 01

01 001

0011 1 01 11 1

Total Bits 32 38 29 29

From Table 3-2 either k = 1 or 2 will achieve data reduction from the original 32 bits to 29 bits. As a
convention, when a tie exists, the option with smaller k value is chosen. In this case, k = 1 will be selected.

When a block of J samples are coded with one split-sample option, the k split bits from each sample are

concatenated using the data format specified in Section 5.

Each split-sample option in the Rice algorithm is designed to produce compressed data with an increment
in the code word length of about 1 bit/sample (approximately k + 1.5 to k + 2.5 bits/sample); the code
option yielding the fewest encoded bits will be chosen for each block by the option-select logic. This

option selection process assures that the block will be coded with the best available code option on the
same block of data, but this does not necessarily imply that the source entropy lies in that range. The actual
source entropy value could be lower; the source statistics and the effectiveness of the preprocessing stage

determine how closely entropy can be approached.

A theoretical expected codeword length of the split-sample coding scheme is shown in Figure 3.1 for

various values of k, where k=0 is the fundamental sequence option. These curves are obtained under the
assumption that the source approaches a discrete geometric distribution. With this source model, tracing
only the portions of these curves that are closest to the ideal diagonal performance curve at any given

entropy will result in a theoretically projected performance curve shown in Figure 3-2. For a practical
system shown in Figure 2-1, ID bits of 3- or 4-bit length will be needed for every block of J samples for

cases of an 8-option or 16-option system. In such a system, the source is likely to deviate from the discrete
geometric distribution; however, the option with the fewest coded bits will be selected. Actual coding

results on aerial imagery, along with the coder's applicability to other data sources with a Gaussian or a
Poisson probability distribution function, are provided in reference [9].
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3.3 Low Entropy Options

3.3.1 General

The two code options, the Second-Extension option 1and the Zero-Block option, provide more efficient

coding than other options when the preprocessed data are highly compressible.

3.3.2 The Second-Extension Option

When the Second-Extension option is selected, each pair of preprocessed samples in a J-sample block is

transformed and encoded using an FS codeword. Let 6i and 8i+ 1 be adjacent pairs of samples from a J-

sample preprocessed data block. They are transformed into a single new symbol y by the following
equation.

y = (8i + 8i+1) (8i + 8i+1 +1)/2 + 8i+1

The J/2 transformed symbols in a block are encoded using the FS codeword of Table 3-1. The above

process requires J to be an even integer which the recommended values obey (J = 8 or 16).

3.3.3 Zero-Block Option

The ideal of Zero-Block option was first suggested by J. Venbrux at the University of New Mexico's

Microelectronics Research Lab. to deal with long runs of "O's". It is selected when one or more blocks of

preprocessed samples are all zeros. In this case, a single codeword may represent several blocks of
preprocessed samples, unlike other options where an FS codeword represents only one or two preprocessed

samples.

The set of blocks between consecutive reference samples, r, as described in 4.2, is partitioned into one or

I

The first extension ofa preprocessed sample is the preprocessed sample itself.
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more segments. Each segment, except possibly the last, contains s blocks. The recommended value ofs is
64.

Within each segment, each group of adjacent all-zeros blocks is encoded by the FS codewords, specified in

Table 3-3, which identify the length of each group. The Remainder-Of-Segment (ROS) codeword in Table
3-3 is used to denote that the remainder of a segment consists of five or more all-zeros blocks.

Table 3-3: Zero-Block Fundamental Sequence Codewords As a Function
of the Number of Consecutive All-Zeros Blocks

Number of All-Zeros Blocks FS Codeword

i 1

2 01

3 001

4 0001

ROS 00001

5 000001

6 0000001

7 00000001

8 000000001

63 0000... 00(g)(0g)_l

(63 0s and a 1)

3.4 No Compression

The last option is not to apply any data compression. If it is the selected option, the preprocessed block of
samples receives an attached identification field but is otherwise unaltered.

3.5 Code Selection

The Adaptive Entropy Coder includes a code selection function, which selects the coding option that
performs best on the current block of samples. The selection is made on the basis of the number of bits that

the selected option will use to code the current block of samples. An ID bit sequence specifies which

option was used to encode the accompanying set of codewords. The ID bit sequences are shown in Table
3-4 for sample dynamic range up to 32 bits.

For applications not requiring the full entropy range of performance provided by the specified options, a
subset of the options at the source may be implemented. The ID specified in Table 3-4 is always required

and suggested, even if a subset of the options is used. With this ID set, the same standard decoder can be
used for decoding partial implementations of the encoder.

Lossless Compression Handbook - CCSDS Recommendation for Space Applications 6



06t ISfO1

for an expected set of data samples. The selection of a predictor should take into account the expected data
as well as possible variations in the background noise and the gain of the sensors acquiring the data. The

predictor should be chosen to minimize the amount of noise resulting from sensor non-uniformity.

x(i-1, j-l) x(i-1, j]

x(i,j-1)

Figure 4-1:

x( i, j)

scan line i-1

scan line i

Typical Pixel Data Arrangement

Given the data arrangement in Figure 4-1, the predictor value 2(i,j) of input value x(ij) can be:

a) One dimensional first order predictor:

2(i,j) = x(i,j-1), or 2(i,j) = x(i-l,j).

b) Two dimensional predictor:

$(i,j) = _A Ix(i, j--l) + x(i-I ,J)l.

c) Two dimensional predictor:

2(i,j) = 1/8 [ 3* x(i,j-1) + 3* x(i-l,d) + 2*x(i-l,j-1)].

Other types of weighted predictor can be devised depending on applications. For multi-spectral data,
another prediction technique is to use samples from one spectral band as an input to a higher order

prediction function for the next band.

One of the simplest predictive coders is a linear first-order unit-delay predictor shown in figure Figure 4-2.

The output, Ai, will be the difference between the input data sample and the preceding data sample.

Prediction Error
A/

\

x; + _ Prediction (_i

l___ Er;orL_ Mapper Preprocessed

Samples
Unit

Delay
Predictor 2 i

Figure 4-2: Preprocessor Using a Unit-Delay Predictor
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Table 3-4: Selected Code Option Identification Key

Option

Zero Block

Second Extension

FS

k=l

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9

k=lO

k=ll

k=12

k=13

k=14

k=15

k= 29

no compression

n<8

0000

0001

001

010

011

100

101

110

8<n<_16

00000

00001

000t

0010

0011

0100

OlOl

0110

0111

1000

1001

1010

1011

1100

1101

lll0

-- I

111 1 1111

NOTE-'--'indicates no applicable value.

16<n

000000

000001

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

11110

11111

4. Pre-processor

The role of the preprocessor is to transform the data into samples that can be more efficiently compressed

by the entropy encoder. To ensure that compression is "lossless", the preprocessor must be reversible. The
FS and sample-split options work on non-negative integer values. The most effective preprocessor will

transform integer data values into all non-negative values with an uni-modal distribution resembling a one-
sided Lapace function. The example in section 3.1 shows that to achieve effective compression, we need a

preprocessing stage that transforms the original data so that shorter codewords occur with higher
probability than longer codewords. If there are several candidate preprocessing stages, we would like to

select the one that produces the shortest average codeword length.

In general a preprocessor that removes correlation between samples in the input data block will improve the
performance of the entropy coder. In the following discussion, we assume that preprocessing is done by a

predictor followed by a prediction error mapper. For some types of data, more sophisticated transform-
based techniques can offer improved compression efficiency, at the expense of higher complexity.

4.1 Predictor

The decorrelation function of the preprocessor can be implemented by a judicious choice of the predictor
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4.2 Reference Sample

It is clear from Figure 4-2 that for a reversible operation, a reference sample is needed to perform the first
prediction. A reference sample is an unaltered data sample upon which successive predictions are based.

Reference samples are required by the decoder to recover the original values from difference values. In
cases where a reference sample is not used in the preprocessor or the preprocessor is absent, it shall not be

inserted. The user must determine how often to insert references. When required, the reference must be

the first sample of a block of J input data samples. In packetized formats, the reference sample must be in
the first Coded Data Set (CDS) in the packet data field, as defined in Section 5 and must repeat after every

r blocks of data samples.

4.3 Prediction Error Mapper

Based on the predicted value, ._ i, the prediction error mapper converts each prediction error value, Ai, to an

n-bit nonnegative integer, 8 i, suitable for processing by the entropy coder. For most efficient compression

by the entropy coding stage, the preprocessed symbols, 8 i, should satisfy:

PO>Pl >-P2 >-" " "Pj >-" • "P(2n-l)

where pj is the probability that 8i equals integer j. This ensures that more probable symbols are encoded
with shorter codewords.

The following example illustrates the operation of the prediction error mapper after a unit-delay predictor is
applied to 8-bit data samples of values from 0 to 255:

Sample Predictor Value

Value _ _i Ai 0i 8i

101 ....
101 101 0 101 0

100 101 -1 101 1
101 100 1 100 2
99 101 -2 101 3

101 99 2 99 4
223 101 122 101 223
100 223 -123 32 155

If we let Xmin and Xma x denote the minimum and maximum values of any input sample xi, then clearly any

reasonable predicted value ._ i must lie in the range [Xmin, Xmax]. Consequently, the prediction error value

Ai must be one of the 2n values in the range [Xmin - _ i, Xmax - x i], as illustrated in Figure 4-3a. We

expect that for a well-chosen predictor, small values of IAil are more likely than large values, as shown in

Figure 4-3b. Consequently, the prediction error mapping function:

8i =
2Ai 0 <_Ai < 0
21Ai1-1 -0 _<Ai _<0

0 + IAil otherwise

where 0 = minimum ( 2 i- Xmin, Xmax - _ i),
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has the property that Pi < Pj whenever IAi[ > 1,53"1. This property increases the likelihood that the probability

ordering ofpi (described above) is satisfied.

Xmin Xi Xi Xmax

Figure 4-3a: Relative Position of Sample Value xi and Predictor Value _ i

o

r_oQoo °°

Xmin - ff i

0

o

o
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o o

o

o

o
o

0 Xmax-- Xi

A i

Figure 4-3b: Typical Probability Distribution Function (pdf) of A i for Imaging Data

5. Coded Data Format

The coded bits from each block of J samples follows a pre-defined format so that cross-support can be

achieved among users. A coded data set (CDS) contains these coded bits from one block. The format of

CDS under different conditions are given in Figure 5-1 (a),(b),(c),(d) for the case when a reference sample

is used for encoding. Cases when reference sample is not needed, it will not be included in the coded bit

stream, and the CDS fields in Figure 5-1 which contain J-1 will contain J instead.
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Option
ID

'1"
n-bit | FS codes for

reference ] J-1 samples
k. (J-1) split bits field

Coded Data Set

(variable-length field)

(a) CDS format with sample-splitting and reference

Option
ID n-bit Ireference Preprocessed (J--l) samples

(b)

Coded Data Set

(fixed-length field)

CDS format when no-compression option is selected

Option
ID T n-bitreference

FS codeword

(c)

Coded Data Set

(variable-length field)

CDS format when zero-block option is selected

Option I
n-bit

FS codewords for J/2 transformed samples

(d)

Coded Data Set

(variable-length field)

CDS format when 2%extension option is selected

Figure 5-1 Format for Coded Data Set
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For second-extension option, in the case when a reference is inserted, a "0" sample is added in front of the
J-1 preprocessed samples, so ,I/2 samples are produced after the transformation. When no reference sample
is needed, then the n-bit reference field is not used.

6. Decoding

The Lossless decoder consists of two separate functional parts, the post processor and the adaptive entropy

decoder, as shown in figure Figure 6-1. The postprocessor performs both the inverse prediction operation
and the inverse of the standard mapper operation.

Y

Packet Configuration
Start Stop Parameters

_k_ i_

Adaptive
-.- Entropy

Decoder =[ Postprocessor

Reference Flag

X

Figure 6-1: Decoder Block Diagram

The first step toward decoding is to set up the configuration parameters so both encoder and decoder

operate in the same mode. These configuration parameters are mission/application specific and are either
known a priori or are signaled in the Compression Identification Packet (CIP) defined in [ 1] for space
missions.

The configuration parameters common to both encoder and decoder are:

- resolution in bits per sample (n = 1 ..... 32);

- block size in samples (J = 8 or 16);

- number of Coded Data Sets (CDSes) contained in a packet (l = 1..... 4096);

- number of CDSes between references (r = 1..... 256);

- predictor type if present;

- sense of digital signal value (positive or bipolar).

For applications such as compressing medical imaging data, image files on ground archive where packet

data structure is not always used for error protection, these decoding parameters should be included in the
compressed file as header information. Then Packet Start and Stop in Figure 6-1 is not needed. The number

of CSDes in a scan line or the number of pixels in a scan line can be used to decode correctly.
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Decoding the coded bits is straight forward once the ID bits are interpreted first since the coding is done
using FS as the basic structure. Only the second-extension code needs an additional short look up table

(LUT) to replace computation. For this option, J/2 FS codewords will be extracted first. These are then
decoded using the following steps:

Step 1. obtain m by counting the 0s of the FS codeword;

Step 2. obtain 13and m s using Table 6-1 logic;

Step 3. calculate 8i+ 1 = rn - ms;

Step 4. calculate 8i = 13- 8i+1.

Table 6-1: Decoding Logic for the Second-Extension Option

m 13 ms
0 0 0

1,2 ! 1

3,4,5 2 3
6 ..... 9 3 6

10 ...... 14 4 10
15 ...... 20 5 15

21 ...... 27 6 21
28 ...... 35 7 28

For the Zero-Block option, the single FS codeword following the ID and reference indicates the number of
all-zero blocks or the ROS condition listed in Table 3-3. Using this table, an appropriate number of all-

zero blocks are generated as input to the postprocessor.

The postprocessor reverses the mapper function, given the predicted value ._ i. When the preprocessor is not

used during encoding, the postprocessor is bypassed as well. The inverse mapper function can be

expressed as:

if Si < 20,

if 8 i > 20,

8il2 when 8i is even
Ai

-(8i + 1)/2 when 8i is odd

f 8i - 0 when 0 = xi - Xmin
Ai

0 - 8i when 0 = Xma x - _fi

where 0 = minimum (_ i - Xmin, Xmax - _ i)

There will be J (or J-1 for a CDS with reference sample) prediction error values A 1, A2 ..... Aj generated

from one CDS. These values will be used in the postprocessor to recover the J sample values Xl, x2 ...... xj.

To decode packets that may include fill bits, two pieces of information must be communicated to the
decoder. First, the decoder must know the block size, J, and the number of CDSes in a packet,/. Second,

the decoder must know when the data field in the packet begins and when it ends. From these two pieces
of information, the number of fill bits at the end of the data field can be determined and discarded.

Lossless Compression Handbook - CCSDS Recommendation for Space Applications 13
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The number of valid samples in the last CDS in the packet may be less than J. If so, the user will have

added fill samples to the last CDS to make a full J-sample block, and the user must extract the valid
samples from the last J-sample block. It is foreseeable that an implementation can be done with variable

size for the last block, but that would be outside the scope of the current CCSDS recommendation.

7. Testing

A set of test data for different data dynamic range n has been created. This test set can be used to verify the
encoder implementation. This limited set of test vectors can be obtained from the software that is

downloadable from the CCSDS Panel-1 home page:

http://www.ccsds.org/ccsds/p I home.html

This data set will cause all the split-sample options, the no-compression option, and the second-extension
option to be selected once. The zero-block option will be selected at least once for up to n=14 when only

256 data points are requested. If the user allows more than 256 data points to be written, then the zero-
block option will be exercised for all n up to n_ 16. Current test programs provide data for resolution from
n=4 to 16 bits.

8. Implementation Issues and Applications

For space applications, several systems issues relating to embedding data compression on board a
spacecraft have been addressed. These include onboard packetization for error containment, buffering for

constant, but bandwidth limited downlink rate, sensor response calibration and compression direction for
optimized compression performance [2].

For applications on ground, normally the requirement is much relaxed; most applications do not use packet
data structure with added channel coding to protect from transmission or storage bit errors. There is also no

need to impose limit on buffering either input or compressed data. To achieve best performance, users only
have to engineer a preprocessor that would de-correlate the input signal into a non-negative integer signal

that resembles Laplace distribution. In certain situations the knowledge of how data is acquired from
various sensors and formatted can be extremely useful in optimizing compression performance. An

example is data collected from an array of different types of sensors (e.g. strain gauge, thermometer,
accelerometer, fuel gauge, pressure gauge ..... etc) from spacecraft or any other machinery. These data are
commonly arranged in sets in the sequence of time steps Ti when data are collected, shown in Figure 8-

l(a).

iSensor1ISensor2ISensor3ISeosorjISensorq

lOataatTo,l-,:,ataa,:T 21Oataat:' 3.. • l

Figure 8-1(a) Common Sensor Data Arrangement at Different Time Steps
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Data at T = 1

Data at T - 2

Data at T = 3

Data at T = 4

Data at Ti

Figure 8-1(b) Optimal Compression Scheme

It is customary to try to apply any compression algorithm directly on the time sequence of the data as it is
collected in such manner. The resulting poor performance can be attributed to the different characteristics

of these sensors. To optimize performance, compression should be applied to data collected from each
sensor in time sequence independent of other sensors as shown in Figure 8-1 (b).

In an effort to broaden the domain of applications, we have applied this algorithm to processed science data
such as sea surface temperature, vegetation index in floating point representations and achieved over 2:1

lossless compression as well. This can be accomplished by judiciously executing compression in the
direction shown in Figure 8-2. In this scenario, the preprocessor will take the 4 or 8 bytes from one

floating-point number as if they were from 4 or 8 different data sources. Each data source now has data of

1-byte (0 - 255) dynamic range. A unit delay predictor is then used before the entropy coder.
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Figure 8-2 Compressing floating-point science data
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The above scheme can be implemented with 4 buffer arrays, each holding the ith byte (i being 0 ..... 3 or 7)

from the floating point data. The length of the array can be fixed at the length corresponding to one scan
line or any number of J-sample blocks. The compressed bits will then be concatenated at the end of

compressing each array.

This CCSDS eRice compression scheme has been utilized on medical imaging data with good results [10].

Applications also have found ways into science data archive, seismic data, acoustic data, particle physics as
well.

Additional Information

(1). One source of available high-speed integrated circuits and software for e_Rice algorithm is
www.mrc.unm.edu.

(2). Once source for decoder board is RT Logic! 719-598.2801

(3). The second-extension option in the e_Rice algorithm is protected by US patent no. 5,448,642 assigned

to NASA. Implementation for commercial usage should be negotiated with NASA.

Dedication

The author dedicates this chapter to the memory of Warner H. Miller whose vision initiated the technology

development of the e_Rice algorithm and whose encouragement helped its completion.
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